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ABSTRACT
Online Learning to Rank (OLTR) has been primarily studied in the
centralised setting, where a central server is responsible to index the
searchable data, collect the users’ queries and search interactions,
and optimize ranking models. A drawback of such a centralised
OLTR paradigm is that it cannot guarantee user’s privacy as all data
(both the searchable one and the one related to user interactions)
is collected by the server.

In this paper, we propose a Federated OLTR method, called
FPDGD, which leverages the state-of-the-art Pairwise Differen-
tiable Gradient Descent (PDGD) and adapts it to the Federated
Averaging framework. For a strong privacy guarantee, we further
introduce a noise-adding clipping technique based on the theory of
differential privacy to be used in combination with FPDGD.

Empirical evaluation shows FPDGD significantly outperforms
the only other federated OLTR method. In addition, FPDGD is more
robust across different privacy guarantee requirements than the
current method: our method is therefore more reliable for real-life
applications.

CCS CONCEPTS
• Information systems → Combination, fusion and feder-
ated search; Retrieval models and ranking.
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1 INTRODUCTION
This paper considers the problem of devising effective online learn-
ing to rank (OLTR) methods embedded in a federated system.
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OLTR methods allow to learn a ranker from observing users
queries and interactions with search engine result pages (SERPs),
e.g., clicks. This is achieved by iteratively train and update a ranker
in production. By using user interactions rather than explicit rele-
vance labels, OLTR overcomes a number of drawbacks associated
with traditional learning to rank approaches such as the high cost
and time required by the editorial annotation effort, the fact that
the intent identified by editors may not be the one the user had in
mind [23], and the issues associated with rapid changes of intents
underlying queries [32].

In traditional OLTR, search results are produced by a centralised
search service, which also keeps track of user queries and interac-
tions that are used as signal for learning an effective ranker [11, 19,
24, 27, 30, 31]. This centralised search service has also a complete
index of the data to be searched (though likely this index is dis-
tributed and replicated across servers and data centres). A drawback
of this solution is that the search service has access to the indexed
data, and also actively collects users queries and interactions such
as clicks: thus user privacy is limited in that all this user data is
collected and exploited by the search service. So, for example, if
users were interested for the search service to offer search func-
tionalities on their private data (e.g. emails, desktop files) they need
to surrender this to the search service. Similarly, the OLTR-based
search service would also not meet the expectations of those users
that wish for their search behaviour not to be collected to protect
their privacy.

In a federated setting, pictured in Figure 1, data on which to
search, along with user queries and interactions are withheld from
the central server, and so is also the responsibility of producing
search results. Search is instead performedwithin the user device 2 ,

Figure 1: Schematic representation of the federated online
learning to rank (FOLTR) setting.
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which also indexes the users data 1 and collects users interactions
3 and performs the online updates required by the OLTR method
4 . Updates are then shared by several users devices with a central
server 5 . It is the responsibility of the central server to combine the
ranker updates from different clients to produce a new version of the
ranker 6 . This new version is then distributed to the users devices
7 . The advantage of a federated OLTR solution over a traditional
OLTR approach is that neither user data nor users queries and
interactions are seen by or shared with anyone, thus potentially
preserving user privacy.

Federated learning approaches to search and recommendation
have only recently emerged. In the area of OLTR, FOLtR-ES, pro-
posed by Kharitonov [13] and then extended by Wang et al. [28],
is the only federated method available. FOLtR-ES uses evolution-
ary strategies similar to those in genetic algorithms to make client
rankers explore the feature space, and a parametric privacy pre-
serving mechanism to further anonymise the feedback signal that
is shared by clients to the central server. This privacy preserving
mechanism is required to protect the gradient updates from pri-
vacy attacks [3]. In fact, despite the federate learning process not
involving the sharing of user data, a malicious attacker that is able
to observe the ranker model and gradient updates can potentially
reconstruct the data that produced such an update [7], thus finally
exposing user data.

However, the effectiveness of the current approach for federating
OLTR (i.e., FOLtR-ES) exhibits large gaps in performance compared
to current state-of-the-art, not federated, OLTR methods [28]. It is
this gap that we want to fill in this paper. Specifically, in this paper,
we put forward the following contributions:

• We cast the current state-of-the-art online LTR approach, the
Pairwise Differentiable Gradient Descent (PDGD) [19], into
the federated learning paradigm, specifically using the fed-
erated averaging algorithm. To do so, we devise a federated
gradient update for PDGD. Our federated PDGD provides
large, significant gains in effectiveness over the current feder-
ated OLTR method (FOLtR-ES [13, 28]), and its effectiveness
generalises across datasets.
• We apply differential privacy on top of the proposed feder-
ated PDGD to secure the gradient updates performed in the
federated environment against privacy attacks. We further
investigate the trade-off between privacy preservation and
ranker effectiveness.

2 RELATEDWORKS
OLTR. Online Learning to Rank (OLTR) differs from traditional
Learning to Rank (LTR) methods in that it makes use of user on-
line feedback (such as clicks) as the optimization goal in order to
tackle some data-annotation drawbacks of LTR. In fact, LTR re-
lies on explicit relevance annotations (labels), which often imply
high annotation costs. In addition, editorial annotation may be
of ethical concern when private data, such as emails, need to be
labelled [29]. Furthermore, user preferences may not agree with
that of annotators [23], users’ search intents may change from time
to time [14, 32], and explicit relevance labels may not account for
these aspects.

The Dueling Bandit Gradient Descent (DBGD) uses online eval-
uation to unbiasedly compare two or more rankers given a user
interaction [30]. Subsequent work developed more reliable or more
efficient online evaluation methods, including Probabilistic Inter-
leaving (PIGD) [11], and its extension, the Probabilistic Multileaving
(PMGD) [20], which compares multiple rankers at each interaction,
resulting in the best DBGD-based algorithm. However, this method
suffers from a high computational cost because it requires sampling
ranking assignments to infer outcomes [31]. Further variations that
reuse historical interaction data to accelerate the learning in DBDG
have also been investigated [10].

The Pairwise Differentiable Gradient Descentmethod (PDGD) [19]
constructs a pairwise gradient to update the ranking model accord-
ing to the click feedback. Compared to previous OLTR methods,
PDGD has showcased faster learning (higher online nDCG) and
convergence to higher effectiveness (higher offline nDCG). Unlike
other methods, PDGD can be applied to any differentiable ranking
model and it is an unbiased method. Oosterhuis and de Rijke trained
a linear and a neural ranker and both showed effective results [19].
PDGD is the current state-of-the-art OLTR method.

Federated learning with privacy protection. Federated Learn-
ing [16] considers a machine learning setting where several data
owners (clients) collaboratively train a model without sharing the
data. To this aim, a coordinator (central server) is required and
each participating client sends what is essential for the training (for
example, the local gradient) to the central server. The Federated
Averaging (FedAvg) algorithm [16] relies on local stochastic gra-
dient descent (SGD), which is computed by each client, while the
centralised server performs the global model update by weighted
averaging the client’s updates.

Differential privacy [4, 5] is a method often used to ensure
user privacy preservation in federated learning (the alternative
is the encryption of the messages). We shall review the notion of
ϵ-differential privacy in Section 3.3. Abadi et al. [1] have developed
the algorithmic techniques for combining SGD-based deep learn-
ing methods with differential privacy. Differential privacy has also
been added to FedAvg algorithm to provide user-level differential
privacy guarantees for language models [17], as for these models it
has been shown that the gradients or shared model’s weights can
reveal sensitive information regarding the clients’ data [6, 7, 25].

Federated OLTR. OLTR has been primarily investigated in a cen-
tralised paradigm, where a central server holds the data to be
searched and collects the users’ search interactions (e.g., queries,
clicks). The training of the ranker is also conducted by the server.
This centralised paradigm is not suited to a privacy-preserving situ-
ation where each client does not want to share the data on which it
wants to search, along with queries and other search interactions.

Recently, the FederatedOLTRwith Evolutionary Strategiesmethod
(FOLtR-ES) [13] has been proposed to address the above privacy-
preserving issues. FOLtR-ES extends the OLTR optimization sce-
nario to the Federated SGD [16] and uses Evolution Strategies
as the optimization method [22]. To defend the gradient updates
from a malicious attacker, FOLtR-ES also includes a privatization
procedure, which leverages the theory of ϵ-local differential pri-
vacy [5]. FOLtR-ES is shown to perform well on small-scale datasets
(MQ2007) for the MaxRR metric, although performance degrades
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when privacy preservation is required [13]. However, the effective-
ness of FOLtR-ES is not consistent across other, larger-scale datasets
nor when typical OLTR metrics are considered (nDCG) [28].

3 FEDERATED PAIRWISE DIFFERENTIABLE
GRADIENT DESCENT

In this section we propose a novel federated version of the current
state-of-the-art OLTR method, the Pairwise Differentiable Gradi-
ent Descent (PDGD) [19], based on the Federated Averaging ap-
proach [16] (Section 3.2). We then show how the gradient update
of our federated OLTR method can be secured using differential
privacy (Section 3.3). First though, we provide a brief introduction
to the PDGD method (Section 3.1).

3.1 Pairwise Differentiable Gradient Descent
Consider optimizing a ranking model fθ (d) which sorts documents
by decreasing output scores, where d represents the features of a
query-document pair. The goal of an OLTR algorithm is to find
the parameter vector θ for which the ranker displays an optimal
ranking list.

Given this generic formulation of the ranking problem, PDGD
applies a Plackett-Luce (PL) model to the ranking function fθ (·),
resulting in a distribution over the document set D:

P(d |D) =
efθ (d )∑

d ′∈D efθ (d
′)
. (1)

A ranking R of length k is then created by sampling from the dis-
tribution k times. With di representing the document at position i ,
the probability of ranking R is computed as:

P(R |D) =
k∏
i=1

P(di |D \ {d1, ...,di−1}). (2)

After receiving the displayed list, the user may click on some of
its documents. The method assumes that clicked documents repre-
sent a preference by the user over unclicked ones. For example, if
dk is clicked while dl is not, the document preference inferred from
this click event is dk >c dl and the probability that the preferred
document dk is sampled beforedl is increased. Based on this, PDGD
adopts a pairwise optimization and estimates the gradient of the
user preferences by the weighted sum:

∇fθ (·) ≈
∑

dk>cdl

ρ(dk ,dl ,R,D)[∇P(dk > dl )]. (3)

From [26], the probability that the preferred document dk is sam-
pled before dl is:

P(dk > dl ) =
P(dk |D)

P(dk |D) + P(dl |D)
=

ef (dk )

ef (dk ) + ef (dl )
. (4)

Thus, the gradient estimation equals:

∇fθ (·) =
∑

dk>cdl

ρ(dk ,dl ,R,D)
efθ (dk )efθ (dl )

(efθ (dk ) + efθ (dl ))2
(fθ
′(dk )−fθ

′(dl )).

(5)
The function ρ is applied to reweigh the click preferences by

the ratio between the occurring probabilities of R or R∗(dk ,dl ,R),
which is the reversed pair ranking for R, i.e. the same ranking as R

Algorithm 1 Pairwise Differentiable Gradient Descent(PDGD) [19]
1: Input: initial weights: θ1; scoring function: f ; learning rate η.
2: for t ← 1 . . .∞ do
3: qt ← receive_query(t) // obtain a query from a user
4: Dt ← preselect_documents(qt ) // preselect documents for query
5: Rt ← sample_list(fθt ,Dt ) // sample list according to Eq. 1,2
6: ct ← receive_clicks(Rt ) // show result list to the user
7: ∇fθt ← 0 // initialize gradient
8: for dk >c dl ∈ ct do
9: w ← ρ(dk ,dl ,R,D) // initialize pair weight (Eq. 6)

10: w ← w e fθt (dk )e fθt (dl )

(e fθt (dk )+e fθt (dl ))2
// pair gradient (Eq. 5)

11: ∇fθt ← ∇fθt +w(f
′
θt
(dk ) − f ′θt

(dl )) // model gradient(Eq. 5)

12: θt+1 ← θt + η∇fθt // update the ranking model

Algorithm 2 FederatedAveraging PDGD.
- set of clients participating training: C , each client is indexed by c ;
- local interaction set: B, number of local interactions: nc .
Server executes:
initialize θ0; scoring function: f ; learning rate: η
for each round t = 1, 2, . . . do
for each client c ∈ C in parallel do
θct+1,nc ← ClientUpdate(c, θt )

θt+1 ←
∑ |C |
c=1

nc
n θct+1

ClientUpdate(c, θ ): // Run on client c
for each local update i from 1 to B do
θ ← θ + η∇fθ //PDGD update shown in Algorithm. 1

return (θ,nc ) to server

except the position of dk and dl are swapped. This is done to reduce
the position bias caused by the current ranking R. The reweighing
function is defined as:

ρ(dk ,dl ,R,D) =
P(R∗(dk ,dl ,R)|D)

P(R |D) + P(R∗(dk ,dl ,R)|D)
. (6)

Algorithm 1 details the PDGD method.

3.2 Federated Averaging for PDGD
The Federated Averaging algorithm [16] is a popular approaches

for Federated Learning. It has the advantages of being robust to
unbalanced and non-IID data and can significantly reduce the com-
munication costs between clients and the central server. Next, we
provide a working description of the algorithm.

Generally speaking, the optimization step of a generic machine
learning algorithm consists of minimizing a loss function f :

min
θ ∈Rd

f (θ ) where f (θ )
def
=
1
n

n∑
i=1

fi (θ ). (7)

For each data example (xi ,yi ), fi (θ ) = loss(xi ,yi ;θ ). Stochastic
gradient descent (SGD) is commonly used to solve this optimization
problem. By using SGD with a fixed learning rate η, the model is
updated as:

θt+1 ← θt − η∇f (θt ). (8)
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To perform the training process in federated manner, we assume
that |C | clients hold their own training dataset. For each client c
holding the local dataset Dc , the volume of the dataset is nc = |Dc |.
The loss function Eq. 7 can be re-written as:

f (θ ) =

|C |∑
c=1

nc
n
Fc (θ ) where Fc (θ ) =

1
nc

∑
i ∈Dc

fi (θ ). (9)

Based on Eq. 9, ∇f (θt ) =
∑ |C |
c=1

nc
n ∇Fc (θ ). On each client c ,

the average gradient on the local data for the current model is
denoted as дc = ∇Fc (θt ). Then, the local model is updated using
θct+1 ← θt − ηдc and the global model is updated by weighted
averaging all local models:

θt+1 ←
|C |∑
c=1

nc
n
θct+1. (10)

To do so, each client locally takes one step of gradient descent on
the current model using its local data and the server then uses the
weighted average of the local models as the global updated model.
This process forms the FederatedSGD (FedSGD) algorithm [16].
Federated Averaging (FedAvg) extends FederatedSGD by adding
more updating times to each client: the local update θct+1 ← θt −ηдc
is performed within a minibatch portion of the local dataset, before
the averaging step.

In our approach (FPDGD), we implement PDGD using FedAvg.
In Algorithm 2, each client considers B interactions and updates the
local ranker using PDGD gradients accordingly. After the local up-
date is finished, each client returns the trained weights to the server.
The server then aggregates those local messages by averaging the
weights and sends back to the clients the latest ranker.

3.3 Securing the Gradient: Differential Privacy
for FPDGD

A key motivation for adopting a federated learning approach is to
protect users’ private data: this is achieved by avoiding having to
share data across clients or with a server – instead, only gradient
updates are shared. However, in the federated learning setting, the
model parameters can be attacked to reveal sensitive information
about the training data [6, 7].

To provide a strong privacy guarantee for the proposed federated
PDGD, we introduce a noise-adding clipping technique [17, 18]
which is based on the theory of differential privacy [4, 5].

Definition 3.1. (ϵ-Differential Privacy): A randomized mecha-
nismM : D → R with a domainD (e.g., possible training datasets)
and range R (e.g., all possible trained models) satisfies ϵ-differential
privacy when there exists ϵ > 0 such that:

P[M(D1) ∈ S] ≤ eϵP[M(D2) ∈ S] (11)

where P[·] is a probability, D1 and D2 are any two datesets differing
for only one data instance, and S denotes all subsets of possible
outputs thatM produces: S ⊆ R. The parameter ϵ represents the
privacy budget, where the lower the value of ϵ , the higher the
privacy guarantee.

Definition 3.2. (Global Sensitivity): For any real-valued query
function t : D → R, where D denotes the set of all possible

Algorithm 3 FederatedAveraging PDGD with differential privacy.
- set of clients participating training: C , each client is indexed by c ;
- local interaction set: B, number of local interactions: nc .
Server executes:
initialize θ0; scoring function: f ; learning rate: η
for each round t = 1, 2, . . . do
for each client c ∈ C in parallel do
θct+1,nc ← ClientUpdate(c, θt )

θt+1 ←
∑ |C |
c=1

nc
n θct+1

ClientUpdate(c, θ ): // Run on client c
for each local update i from 1 to B do
θ ← θ + η∇fθ //PDGD update shown in Algorithm. 1

θ ← θ ·min(1, ∆
2· ∥θ ∥ ) //clip the weights

return (θ + γ − γ ′,nc ) to server //γ ,γ ′ gamma noise sampled from
Eq. 16

datasets, the global sensitivity ∆ of t is defined as:

∆ = max
D1,D2

|t(D1) − t(D2)| (12)

for all D1,D2 ∈ D.

Since there is no priori knowledge about the sensitivity of PDGD,
we clip the weights outputed by PDGD to the bound ∆

2 , as in Eq. 13,
so that the parameter updating can meet the global sensitivity ∆. It
should be noticed that the sensitivity ∆ is used as hyper-parameter
and will be determined through grid search for a given privacy
level ϵ .

θ = θ ·min(1,
∆

2· ∥ θ ∥
). (13)

The Laplacian mechanism preserves ϵ-differential privacy [4]
through leveraging random noise X sampled from a symmetric
Laplacian distribution. The probability density function f (x) of a
zero-mean Laplacian distribution is:

f (x) =
1
2λ

e−
|x |
λ (14)

where λ is the scale parameter of the Laplacian distribution. Given
∆ of the query function t , and the privacy loss parameter ϵ , the
Laplacian mechanism M uses random noise X drawn from the
Laplacian distribution with scale λ = ∆

ϵ .
In the federated learning setting, each client contributes a portion

of differentially private noise so that the sum of all contributions re-
sults in a differentially private noise value. Previous work has used
Gamma random variables to generated the Laplace Random vari-
able [18]. Specifically, a Laplace Random variable can be generated
from the sum of n Gamma random variables:

L(µ, λ) =
µ

n
+

n∑
p=1

γp − γ
′
p (15)

where µ is the mean parameter and λ is the scale parameter of the
Laplacian mechanism.

γp and γ ′p are Gamma random variables with probability density
function defined as:

f (x) =
(1/s)1/n

Γ(1/n)
x1/n−1e−x/s (16)
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where 1/n is the shape parameter, s is the scale parameter and
Γ(p) =

∫ ∞
0 xp−1e−x dx . In our federated setting,n equals to number

of clients |C | and s is equivalent to λ of the Laplacian distribution.
We set µ = 0 and make use of this differential privacy technique

so that each client adds γp − γ ′p noise to each gradient update. This
process is shown in Algorithm 3.

4 EXPERIMENTAL SETUP
We rely on the typical evaluation setup used by previous OLTR
research [9, 19, 20] to empirically investigate the effectiveness of the
proposed FPDGD approach, and how it compares to other methods.
This consists of use standard learning to rank datasets, simulate
user interactions with SERPs, i.e. simulate clicks, and measure both
online and offline performance.

Datasets. We use the MQ2007 [21] and MSLR-WEB10k [21]
datasets. While other, larger datasets for learning to rank are cur-
rently available, our choice considered the trade-off between rep-
resentativeness and the high computational costs associated with
experimenting with the federated OLTR methods on larger datasets.

MQ2007 is relatively small and has fewer assessed documents
per query, and was chosen to allow direct comparison with previous
work on federated OLTR [13], which mainly used MQ2007, and be-
cause this dataset, being small, allows for computationally treatable
experiments. The dataset, compiled using data from the TREC 2007
Million Query Track [2], contains 1,700 queries, divided into 5 folds,
with associated relevance assessments, expressed on a 3-level scale,
from not relevant (0) to very relevant (2). Each query-document pair
is represented by a 46-dimensional feature vector.

The MSLR-WEB10k is larger and more recent than MQ2007,
and it was chosen as previous work suggested findings for fed-
erated OLTR observed on MQ2007 may not generalise on MSLR-
WEB10k [28]. The MSLR-WEB10k, constructed from a retired la-
belling set of a Microsoft web search engine, contains 10,000 queries
(divided into 5 folds), and on average each query is associated with
125 assessed documents on a 5 point scale. Query-document pairs
in MSLR-WEB10k have a much richer representation (136 features)
than in MQ2007.

User simulations. Both the querying and clicking behaviour
of users are simulated in our experiments.

For the querying behaviour, for each client participating in the
federated OLTR, we sample B queries randomly, in line with pre-
vious work on FOLTR [13, 28]. For each query, we use the local
ranking model (i.e. that held by the client) to rank documents; we
limit SERP to 10 documents.

For the click behaviour, we rely on the Cascade Click Model
(CCM) [8]. Under CCM, users are assumed to examine a SERP from
top to bottom. Each document is inspected and clicked with click
probability P(click = 1|r ), conditioned on the relevance label r . Af-
ter a click occurs, the user stops scanning with stopping probability
P(stop = 1|r ), or continues otherwise. It is common practice in
OLTR to consider three instantiations of the CCM: a perfect user
with very reliable feedback, a navigational user searching for rea-
sonably relevant documents, and an informational user with the
noisiest click feedback among the three instantiations. The val-
ues used for P(click = 1|r ) and P(stop = 1|r ) for CCM in the two
considered datasets are reported in Table 1.

Federated setup. We simulate the federated OLTR scenario
as follows. Each client holds a copy of the current ranker. For
each client, we consider |B | user queries along with the respective
interactions, during which the local ranker is optimised using the
simulated user clicks. After |B | interactions have occurred, the client
sends the local message (updated weights) to the central server. The
central server optimises the global ranker by aggregating the local
messages and sends the newly-updated ranker back to each client.

In our experiments for MQ2007, unless otherwise specified, we
simulate |C | = 1, 000 clients with each client performing |B | = 4
interactions (queries) locally to contribute to each global model
update. We restrict the total interaction budget to 4 million queries,
which results in 1,000 global updates. For MSLR-10K dataset, unless
otherwise specified, we also simulate |C | = 1, 000 clients but with
only |B | = 2 local interactions and we set the total interaction
budget to 400,000 queries; thus resulting in 200 global updates.

Baselines To investigate the impact of the federated averag-
ing process on PDGD, we compare FPDGD against the original,
centralised, PDGD model [19]. We follow the original paper and
set the learning rate η = 0.1. For both method, we train a linear
model as the ranker. In federated OLTR, global rankers are updated
in batches, that is, the central server updates rankers after each
client has executed B searches and the local ranker updates have
been sent to the server. However, in centralised OLTR settings,
rankers are updated after each user interaction (batch size = 1). For
fair comparison, we adapt PDGD to also be updated in batch by
accumulating gradients updates.

At the time of writing, FOLtR-ES is the only federated OLTR
algorithm proposed in the literature [13], and it constitutes a natural
baseline for comparison with FPDGD, thus allowing to compare
different federated OLTR methods. For FOLtR-ES, we train a linear
model to make fair comparison with our method trained on linear
ranker. We set the learning rate η = 0.001 and choose the reciprocal
rank of the highest clicked result (MaxRR) in an interaction as the
optimization metric in FOLtR-ES.

Evaluation measures. To evaluate OLTR and FOLTR methods
we rely on the evaluation practice from previous OLTRwork, which
consists of measuring the rankers’ offline and online performance.

To measure offline performance, we average nDCG@k of the
global ranker over the queries in the held-out test set. We record
this performance value after each update of the global ranker and
the final performance is also recorded. We consider k = 10 as the
number of documents in a ranked list for a query.

To measure online performance, we compute the cumulative dis-
counted nDCG@k for the rankings displayed during the training
phase [9]. For t-th query in a sequence of T queries, with Rt repre-
senting the ranking list displayed to the user, online performance
is computed as:

Online_Per f ormance =
T∑
t=1

nDCG(Rt ) · γ t−1. (17)

This measure indicates the quality of the user experience during
training; the discount factor γ puts more importance to the interac-
tions in the early phases of training. Following previous work [19],
we set γ = 0.9995.
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Table 1: Settings of the CCM click models for MSLR-WEB10k (MQ2007) dataset. Note in MQ2007, only three-level of relevance
is used. We demonstrate the values for MQ2007 in bracket.

P(click = 1 | r ) P(stop = 1 | click = 1, r )
Click models r = 0 r = 1 r = 2 r = 3 r = 4 r = 0 r = 1 r = 2 r = 3 r = 4

perfect 0.0 (0.0) 0.2 (0.5) 0.4 (1.0) 0.8 (-) 1.0 (-) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (-) 0.0 (-)
navigational 0.05 (0.05) 0.3 (0.5) 0.5 (0.95) 0.7 (-) 0.95 (-) 0.2 (0.2) 0.3 (0.5) 0.5 (0.9) 0.7 (-) 0.9 (-)
informational 0.4 (0.4) 0.6 (0.7) 0.7 (0.9) 0.8 (-) 0.9 (-) 0.1 (0.1) 0.2 (0.3) 0.3 (0.5) 0.4 (-) 0.5 (-)

Each experiment is repeated 25 times, spread evenly over all
dataset training folds. All evaluation results are averaged and sta-
tistical significant differences between system pairs are evaluated
using two-tailed Student’s t-test with Bonferroni correction.

Choosing privacy parameters The differential privacy pro-
cess in FPDGD is controlled by the parameter ϵ (Section 3.3). To
make comparison with the baseline FOLtR-ES method fair, we uti-
lize the FOLtR-ES’s privacy parameter p to fix an upper bound on
the value of ϵ . In FOLtR-ES, the higher the p value, the lower the
privacy. In our experiments, we set p ∈ {0.25, 0.5, 0.9, 1.0}; these
settings correspond to upper bound values of ϵ ∈ {1.2, 2.3, 4.5, 10}.
For a given privacy level ϵ , we search the best setting of sensi-
tivity ∆ through grid search in {1, 3, 5, 7, 9}. Then, for each ϵ ∈
{1.2, 2.3, 4.5, 10}, we get the corresponding ∆ ∈ {3, 3, 5, 5}.

5 RESULTS
5.1 Overall ranking performance
Figure 2 displays the offline performance (nDCG@10) of the pro-
posed FPDGD method across different settings of differential pri-
vacy ϵ , along with the effectiveness of the non-federated PDGD
method and the baseline federated FOLtR-ES method (across differ-
ent settings of differential privacy p). The online performance of
these methods are reported in Table 2.

Impact of federation on PDGD. We start the analysis of the
results by commenting on the impact of federation on the PDGD
method, focusing on the offline performance (Figure 2). When
PDGD is given the same number of updates than its federated
counterpart, its performance are lower. This is not surprising: the
non-federated PDGD only uses the click data from one search
interaction (query) for each update, and thus it is updated only
200 times in MSLR-WEB10k (1,000 in MQ2007). While FPDGD is
also updated 200 times (1,000), when an update is performed this
considers 2 interactions per client and 1,000 clients – thus the to-
tal interaction budget assigned to FPDGD in MSLR-WEB10k is
200 × 2 × 1, 000 = 400, 000 (4 million in MQ2007) compared to that
of 200 for PDGD (1,000 for MQ2007). However if PDGD is given the
same interaction budget as its federated counterpart, then PDGD
does perform better than FPDGD. This difference is due to PDGD
being able to perform a ranker update at each interaction (query),
while FPDGD needs to wait the completion of batch size × clients
= 2 ∗ 1, 000 = 2, 000 interactions in MSLR-WEB10k for doing an up-
date (4, 000 in MQ2007). Similar insights are found when examining
online performance (Table 2).

Impact of privacy. Next, we analyse the impact of differential
privacy on FPDGD, where lower values of ϵ correspond to higher

privacy guarantees. We find that differential privacy has little im-
pact on the performance of FPDGD (both online and offline) for
MSLR-WEB10k. For MQ2007, lower differential privacy values tend
to provide lower performance, though not significantly worse.

Comparison with FOLtR-ES. When comparing the proposed
federated approach, FPDGD, with the currently only other federated
OLTR method, FOLtR-ES, we note that FPDGD consistently outper-
forms FOLtR-ES on offline performance across datasets, click mod-
els, and differential privacy settings (Figure 2). Gains over FOLtR-
ES are specifically notable for all MSLR-WEB10k experiments and
for the informational click model for MQ2007. The fact that the
performance of FOLtR-ES are particularly poor in MSLR-WEB10k
finds confirmation in previous work, which shows FOLtR-ES has
poor performance on large datasets [28]. In addition, in MQ2007,
FOLtR-ES exhibits a surprisingly decreasing trend as global model
updates increase, especially for higher values of differential privacy
p (p = 0.9, 1.0), when the perfect and informational click models
are considered. Similar observations can be made when considering
online performance on MSLR-WEB10k dataset (Table 2): FPDGD
is significantly better than FOLtR-ES under all three click models
within different privacy budgets. However, on MQ2007, our method
is not consistently better than FOLtR-ES. When the navigational
click model is considered, FPDGD is significantly outperformed
by FOLtR-ES. We believe the results are caused by the random
noise from the sampling strategy of PDGD that occurs in the early
training interactions: results on small-scale datasets like MQ2007
tend to be easily affected by this issue. In depth analysis of the
results on MQ20071 reveal that for this dataset FOLtR-ES has better
online performance than FPDGD at the very early search interac-
tions, with FPDGD soon catchup with, and then outperforming,
FOLtR-ES in later interactions.

EvaluationusingMaxRR. In our experiments, we used nDCG@10
as evaluation measure and optimisation criteria for the OLTR pro-
cess, in line with previous work on OLTR. FOLtR-ES however
was previously evaluated on MaxRR [13] (though Wang et al. also
reports nDCG@10 evaluation [28]), which is used internally by
FOLtR-ES as optimisation criteria. For completeness, in Figure 3 we
compare FPDGD and FOLtR-ES when MaxRR is used for evaluation.
We find that the trends observed when evaluating with nDCG@10
(Figure 2) are also found when MaxRR is used.

5.2 Influence of number of clients
To study the influence of the number of clients participating in our
federated setup, we vary the number of clients in |C | ∈ {10, 100, 1000}.
We report the offline nDCG@10 results obtained on MSLR-10k in

1Not shown here, but will be made available as online appendix.
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(a) MQ2007

(b) MSLR-WEB10k

Figure 2: Offline performance (nDCG@10) across datasets, under different click models, averaged across all dataset splits and
experimental runs. Shaded areas indicate the standard deviation.
Table 2: Online performance for each dataset under different instantiations of CCM (Table 1). Significant gains and losses of
FPDGD over FOLtR-ES (baselines) are indicated by △, ▽ (p < 0.05) and ▲ , ▼ (p < 0.01), respectively.

ϵ = 1.2 ϵ = 2.3 ϵ = 4.5 ϵ = 10

MQ2007

perfect FPDGD 296.03 ▼ 296.09 ▼ 313.28 313.26
FOLtR-ES 316.66 317.93 313.80 312.29

navigational FPDGD 293.29 ▼ 293.42 ▼ 303.80 ▼ 303.82 ▼
FOLtR-ES 319.90 325.04 324.33 323.05

informational FPDGD 291.84 292.02 301.45 ▲ 301.30 ▲
FOLtR-ES 292.58 294.78 288.57 285.96

MSLR-10k

perfect FPDGD 54.62 ▲ 54.61 ▲ 54.64 ▲ 54.61 ▲
FOLtR-ES 39.35 40.50 40.87 41.14

navigational FPDGD 52.33 ▲ 52.30 ▲ 52.30 ▲ 52.29 ▲
FOLtR-ES 38.55 39.59 40.32 40.47

informational FPDGD 51.11 ▲ 51.16 ▲ 51.14 ▲ 51.18 ▲
FOLtR-ES 37.26 37.18 37.21 37.53

Figure 4 (similar conclusions are identified when considering online
performance and MQ20072). We consider two versions of FPDGD:
one that uses the introduced differential privacy mechanism with
∆ = 5 and ϵ = 4.5 (labelled w DP in Figure 4), and one for which
differential privacy is turned off (w/o DP).

When FPDGD does not rely on differential privacy, the more
clients participate to the federated system the better, although dif-
ferences are minor and not statistically significant. However, if
differential privacy is used, when only a small number of clients

2Not shown here, but will be made available as online appendix.

participates to the federation, then FPDGD performs poorly. We
believe that this is so because the differential privacy process adds
noise to the local gradient updates; this noise hinders the conver-
gence of the global model when relying on very little interaction
data for updating (i.e., 10 clients × 2 batch size = 20 queries). In this
case, the noise introduced by the differential privacy process has a
large impact. Conversely, differential privacy has little to no impact
on performance if numerous clients participate (|C | = 100, 1000).
Across all settings, we note that past a certain point, adding more
clients to the system has little impact – this finding is confirmed by
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(a) MQ2007

(b) MSLR-WEB10k

Figure 3: Offline performance in terms of MaxRR across datasets, under three different click models, averaged across all
dataset splits and experimental runs. Shaded areas indicate the standard deviation.

Figure 4: Offline performance on MSLR-WEB10k under three different click models, averaged across all dataset splits and
experimental runs, for different number of clients |C |. We study FPDGDwith differential privacy (w DP) and without (w/o DP).

prior work in general federated learning, which showed diminish-
ing returns (because of the communication costs) for adding more
clients beyond a certain point [16].

5.3 Influence of batch size
We further study the influence of the local batch size (|B |) on FPDGD
by varying |B | ∈ {2, 4, 8}. In our federated setting, each client par-
allelly conducts FPDGD’s model update based on the local inter-
actions B (i.e. queries) and sends the updated model to the server.
Note that within each batch of |B | interactions, the client updates
the local model |B | times. The differential privacy settings are set
to ∆ = 5, ϵ = 4.5.

The offline nDCG@10 performance of FPDGD across different
B settings are shown in Figure 5 for MSLR-WEB10k3 The results

3Similar findings for online performance and MQ2007, not shown here.

suggest that the larger the batch size, the better the offline per-
formance. This trend is especially significant on the perfect click
model, although models trained on different batch sizes tend to
ultimately converge after enough updates have been made. For
the informational click models these differences are less remarked
(though still significant), and convergence is long delayed. These
results should not be surprising: a larger batch size means that
more interactions (queries) have been used during a local update,
e.g., 200 interactions × 2 batch size = 400 queries per client vs. 200
interactions × 8 batch size = 1, 600 queries per client.

However, when the budget is maintained equal across differ-
ent batch sizes, and thus smaller batch size means more frequent
updates, then the performance obtained across different values of
|B | is quite similar (and no significant differences found), although
a small batch size guarantees earlier updates, thus resulting in
stronger initial performance. This trend is shown in Figure 6 for
the offline performance on MSLR-WEB10K. The stronger initial
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Figure 5: Investigation of the influence of batch size |B | on offline performance for MSLR-WEB10k under three different click
models, averaged across all dataset splits and experimental runs. Shaded areas indicate the standard deviation.

Figure 6: Investigation of the influence of batch size |B | on offline performance for MSLR-WEB10k under three different click
models, averaged across all dataset splits and experimental runs, under fixed budget.

performance, which is due to the initial model update occurring
earlier when the batch size is small, does result in a slightly higher
online performance when a small batch size is used.

6 CONCLUSIONS
In this paper, we considered the problem of effective online learning
to rank within a privacy-preserving environment, where the user
private data (e.g., the data to be searched, their queries and click
interactions) never leave the user’s own device. To this aim, we cast
the Pairwise Differentiable Gradient Descent method (PDGD) [19],
which represents the current state-of-the-art in OLTR, to the Fed-
erated Learning framework by using the Federated Averaging al-
gorithm, thus proposing the federated Pairwise Differentiable Gra-
dient Descent method (FPDGD). To further enhance the privacy
of the method, we overlaid an ϵ-differential privacy method to the
proposed FPDGD, thus enforcing a level of privacy guarantee on
the local gradient updates. The main features of our method are:
(1) we use PDGD as the core OLTR optimisation algorithm – this
method is shown to perform well and converge faster than previous
methods and is unbiased with respect to users’ preferences; (2) the
FedAvg framework is easy to implement and it has been shown to
converge for non-IID data4 [12, 15]; (3) we use differential privacy
to protect the communication of the local gradient updates between
the clients and the server.

We further demonstrate the effectiveness of FPDGD through
empirical experiments comparing the method to its non-federated
counterpart (PDGD) and the other only federated OLTR method,

4i.e., data that is non independent and identically distributed; for example in the context
of federated OLTR this means that different clients hold data that largely differs in its
feature distribution.

FOLtR-ES. Compared to the non-federated PDGD, our method con-
verges slower when the same total interaction budget (i.e. number
of queries) is considered: in particular, the difference is significant
when differential privacy is considered – this is the price to pay
for not sharing the clients’ data with the central sever (federated
setup) and for protecting the local gradient updates (differential
privacy). When compared with FOLtR-ES, the proposed method
showcases higher performance. This resonates with previous work
that showed the performance of FOLtR-ES to be highly variable
across datasets and settings, making the method unstable and of
risky use in practice [28]. FPDGD instead represents a reliable, sta-
ble, and secured alternative to non-federated state-of-the-art OLTR
methods.

In future work we plan to evaluate FPDGD on a wider selection
of large datasets and explore a large number fo search interactions,
to confirm the positive results obtained on MQ2007 and MSLR-
WEB10k. The original PDGD method was investigated with respect
to both a linear ranker (which we used also for FPDGD) and a neural
ranker – in future we plan to investigate the impact a neural ranker
has on FPDGD. Finally, we also plan to study the effect on non-IID
data on FOLTR and in particular on our FPDGD.

The source code that implements FPDGD, along with experiment
code and additional evaluation plots are made available at http:
//ielab.io/FPDGD.
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