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Abstract. The query likelihood model (QLM) for information retrieval
has been thoroughly investigated and utilised. At the basis of this method
is the representation of queries and documents as language models; then
retrieval corresponds to evaluate the likelihood that the query could be
generated by the document. Several approaches have arisen to compute
such probability, including by maximum likelihood, smoothing and con-
sidering translation probabilities from related terms.

In this paper, we consider estimating this likelihood using modern pre-
trained deep language models, and in particular the text-to-text transfer
transformer (T5) – giving rise to the QLM-T5. This approach is evaluated
on the passage ranking task of the MS MARCO dataset; empirical results
show that QLM-T5 significantly outperforms traditional QLM methods,
as well as a recent ad-hoc methods that exploits T5 for this task.

1 Introduction

Language modelling has been introduced in Information Retrieval (IR) in the
late ’90s to score documents for a query [18, 5] and as alternative to other popular
methods such as TF-IDF and BM25. The most basic and popular form of lan-
guage model used in IR is unigram language model, which defines a probability
distribution over the words in the collection. A common way to exploit language
models in IR is within the query likelihood model (QLM) [18], on which we base
the method in this paper; alternative approaches include the relevance model of
Lavrenko&Croft [9] and the risk minimization framework of Zhai&Lafferty [8].

QLM scores a document for retrieval by considering the likelihood that the
query could be generated by the document. The basic form of QLM uses the max-
imum likelihood estimator (MLE) to compute the query likelihood; this however
exposes the method to issues due to data sparseness [24], e.g., the estimated
probability of a query term that does not appear in the document will be zero,
rendering the overall score of the document to be zero. To overcome this issue,
smoothing has been commonly used. Smoothing transfers probability mass from
the probability associated with a query term appearing in the document to the
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probability associated with that query term appearing in the collection. Exten-
sively used smoothing methods include Jelinek–Mercer and Dirichlet smooth-
ing [24], which interpolate, in a parametric manner, the likelihood of the term
in the document with that associated with the term appearing in the collection.
The optimal parameter values for these smoothing techniques are collection and
application dependent [24]. Alternatives to these form of smoothing are methods
that transfer probabilities across related terms (translation language models [1])
and others that use clusters and nearest neighbours [11, 7].

Recent advances in natural language processing have seen the introduction
of deep language models [2, 12, 19, 20]; pre-trained versions of these models have
been applied to search tasks demonstrating promising results [10]. Specifically,
the common trend in IR is to obtain deep language models that have been pre-
trained on a large text corpus and convert them to ranking models via fine-tuning
on ranking tasks. An example is the work from Nogueira and Cho [16], where
the raw text from a query-document pair is provided as input to the pre-trained
deep language model BERT, which in turn outputs a relevance score. A notable
benefit of using such deep language models is that no language preprocessing
pipeline such as stemmers and stoppers is required. For example, different mor-
phological variations are automatically handled by these deep language models
by exploiting the knowledge gained from the pre-train and fine-tune steps.

In this paper we build upon the QLM tradition in IR, and create a novel QLM
ranking method based on a specific deep language model. Our method, called
QLM-T5, uses the text-to-text transfer transformer language model (T5) deep
language model [20] in place of the MLE estimation in QLM; and, unlike in tra-
ditional QLM, it does so effectively without the need for further smoothing. T5 is
an encoder-decoder model that has been shown effective for an array of natural
language processing tasks. Our experimental results on the MS MARCO passage
ranking task [15] show that QLM-T5 significantly outperforms traditional QLM
methods, demonstrating the benefit of deep language models used within a QLM
approach to IR.

2 T5 Query Language Model

The query likelihood model calculates the probability P (Q|D) of generating
the query Q from a given document D. Traditional approaches in IR use the
maximum likelihood estimation (MLE) and smoothing methods to compute this
probability [24]. Recent autoregressive deep language models such as generative
pre-trained (GPT) [19] and text-to-text transfer transformer (T5) [20] can alter-
natively be used to calculate the likelihood of generating a target text given an
input text using the teacher forcing inference mechanism: instead of taking the
generated token as the input to the next time step, the target token is passed as
the next input. The likelihood of generating an entire sequence of target tokens
is then computed by the product of the sampling probabilities of the next target
tokens from the output probability distributions of each time step.

In this work we focus on using the T5 deep language model, which has been
already exploited in previous work in IR, but in an alternative form, i.e., to
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generate possible query variations to append to the document representation,
which is then used for retrieval (doc2query-T5 method) [17].

The T5 model is an encoder-decoder architecture. When using the teacher
forcing mechanism, the document text tokens d0, d1...dn ∈ D are provided as
input to the encoder, while the target query text tokens q0, q1...q|Q| ∈ Q plus a
decoder start of sentence token < bos > at the beginning of the sequence are
provided as input to the decoder. At each time step t, the decoder outputs the
probability PT5(qt+1) of sampling the next target query token:

T5t(Encoder(d0, d1...dn), Decoder(< bos >, q0, q1...qt)) = PT5(qt+1) (1)

It is important to note that the probability of sampling the next query token is
conditioned to the document text and all previous query tokens1:

PT5(qt+1) = PT5(qt+1|D,< bos >, q0, q1...qt) (2)

This is differ from the traditional unigram QLM, where the sampling probabil-
ities of each token only depend on the document text, but somewhat resemble
dependence language models [4, 13] that provide a similar mechanism.

We take a similar approach to the traditional QLM to exploit T5 for retrieval.
Specifically, we compute the query (log) likelihood for Q given the document D
as

log(PQLM−T5(Q,D)) = log(PT5(< bos >)) +

|Q|−1∑
i=0

log(PT5(qi)) (3)

3 Empirical Evaluation

We are interested to empirically verify the effectiveness of QLM-T5, compared to
traditional forms of QLM; we further compare QLM-T5 to a recent method that
also exploits T5 for ranking (doc2query-T5 [17]), but without casting T5 in the
QLM framework. For this, we use the development portion of the MS MARCO
Passage Ranking Dataset [15]. This portion consists of ≈8.8 million passages
and 6980 unique queries; on average, each query has one relevant passage only.

Passages were indexed with Anserini [23] using the default parameters. Anserini
was also used to produce runs for BM25 (k1 = 0.82 and b = 0.68), Query Lan-
guage Models with Dirichlet (QLM-D, µ = 1, 000) and Jelinek Mercer (QLM-
JM, λ = 0.1) smoothing, and Sequential Dependence Model using QLM-JM [13]
(QLM-JM-SDM), retrieving the top 1,000 passages for each query. These form
our first-stage retrieval baselines. We used QLM-JM-SDM to inform us regard-
ing whether it may have been the inclusion of query term dependencies, rather
than the actual deep language model, that produced gains over QLM-D/JM.

Because the inference stage of T5 is computationally expensive, in our ex-
periments we used QLM-T5 as a second-stage re-ranker, with BM25 used as the
first-stage ranker. We then also created runs where QLM-D and QLM-JM were

1 The first query token q0 only depends on the document text D plus the ¡bos¿ token.
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used as second-stage re-ranker on top of BM25. For completeness, we also ran
our QLM-T5 using QLM-D and QLM-JM as first-stage rankers. Although the
aim of our experiments is to study the effectiveness of QLM-T5 with respect to
other methods in the QLM framework, we also reproduced the doc2query-T5
model [17] to provide further context for the interpretation of our results. The
doc2query-T5 model also relies on T5; furthermore, the same fine-tuned model
was used2. However it does so by leveraging T5 to source possible query can-
didates that may be asked regarding a target document (passage in the case of
these experiments). These query candidates are appended to the document to
enhance its representation – retrieval is then performed with BM25 operated on
the new representation of the documents.

As evaluation metrics, we use MRR@10, nDCG and INST. MRR@103 was
used despite remarks that this is an unstable metric (Fuhr’s argument [3], but
perhaps more importantly Zobel&Rashidi’s findings [25]) because this is the
only metric used in the MS MARCO leaderboard, to which we want to allow
comparison for further contextualisation of the results reported here. The use
of nDCG for this task is less controversial (though note only binary relevance
and mostly single-relevant documents for each query). The cut-offs considered
were at 1 to model the use of the method for selecting an answer in context of
e.g., a conversational search agent; at 3 and 10 to model a typical web search
scenario; and at 1,000 to provide an evaluation of the complete ranking. We also
computed INST [14] using the publicly available implementation from Koop-
man&Zuccon [6]. INST is a weighted precision metric where the probability of
a user assessing a result at a specific rank depends on the rank position, the
expected number of relevant documents T , and the actual number of relevant
documents encountered up to that rank. This metric suits well the MS MARCO
task, which is a question-answer based task with T = 1 (we use this value).
Statistical analysis of results is performed using two-tailed paired t-test.

4 Results

Empirical results are reported in Table 1. The first four rows in the table show
BM25 is superior to QLM-D, QLM-JM and QLM-JM-SDM on MS MARCO (dif-
ferences statistical significant, p < 0.01); the superiority of BM25 with regards
to QLM-D and QLM-JM is consistent with previous findings on other collec-
tions [21, 22]. The next pair of rows shows that the traditional QLM methods
are not effective second-stage rankers either.

We now focus on the effectiveness of the proposed QLM-T5, which is used
to re-rank results from a first-stage ranker (all results up to rank 1,000). We
find that the use of QLM-T5 (irrespective of the first-stage method QLM-T5
uses) significantly outperforms first-stage retrieval runs, other re-rankers, and

2 T5 model for MS MARCO from Nogueira et al. [17], fine-tuned to maximize query
likelihood.

3 i.e. the reciprocal rank value (averaged across all queries) up to rank 10 if a relevant
document has been retrieved by then, otherwise zero.
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Method ndcg@1 ndcg@3 ndcg@10 ndcg@1000 INST MRR@10

BM25 0.1042 0.1736 0.2340 0.3161 0.0916 0.1874
QLM-JM 0.0960 0.1586 0.2181 0.2955 0.0849 0.1740
QLM-D 0.0831 0.1371 0.1874 0.2752 0.0730 0.1491
QLM-JM-SDM 0.1044 0.1674 0.2271 0.3032 0.0900 0.1825

BM25+QLM-JM 0.0960 0.1586 0.2181 0.3006 0.0849 0.1741
BM25+QLM-D 0.0831 0.1371 0.1875 0.2795 0.0730 0.1492

QLM-JM+QLM-T5 0.1765 0.2786 0.3577 0.4086 0.1485 0.2948
QLM-D+QLM-T5 0.1769 0.2790 0.3595 0.4123 0.1489 0.2960

BM25+QLM-T5 0.1784 0.2823♦ 0.3647♦§ 0.4215♦§ 0.1506♦ 0.2997♦§

doc2query-T5+BM25 0.1653 0.2600 0.3377 0.4139 0.1389 0.2768

Table 1. Effectiveness of first-stage and rerank methods. BM25+QLM-T5 is statis-
tically significant better (p < 0.01) than all first-stage rankers, including doc2query-
T5+BM25. BM25+QLM-T5 is statistically significant better (p < 0.01) than QLM-
JM+QLM-T5 on metrics indicated by ♦, and BM25+QLM-T5 is statistically signifi-
cant better (p < 0.01) than QLM-D+QLM-T5 on metrics indicated by §.

Fig. 1. Rank position gains/losses per query for QLM-T5 re-ranker compared to the
respective first-stage retrieval method.

the doc2query-T5 model, which also relies on the T5 language model, on several
evaluation metrics. Among all QLM-T5 runs, we find that the one that uses
BM25 as first-stage ranker outperforms the others, and differences are statisti-
cally significant (p < 0.01) on several evaluation metrics.

Furthermore, in Figure 1 we present the ranks gained (or lost) by QLM-T5
with respect to BM25, QLM-D and QLM-JM. Specifically, we measure how many
rank positions the relevant passages have gained (lost) compared to the corre-
sponding first-stage ranker method. Figure 1 indicates that QLM-T5 reranker
sensibly improves rankings (movements of up to 991 ranks) for more than 50% of
the queries for BM25, QLM-JM, and QLM-D, with more than ≈ 1, 500 queries
exhibiting gains of over 100 rank positions. The method does however produce
some losses: a small amount of queries appear to have rank losses for QLM-T5.
Similar findings are obtained when nDCG was used in place of rank position.

To better understand when QLM-T5 worked and when it failed, we fur-
ther analyzed the queries with the maximum (991) and minimum (-495) rank
gains/losses between BM25+QLM-T5 and BM25. For query ”what does it mean
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when you dream about babies”, QLM-T5 achieved the maximum rank gain of
991: the relevant passage is pushed from BM25’s rank position 993 up to rank
2. We note that the passage placed by BM25+QLM-T5 at rank 1 also appears
relevant to us: ”... Dreams that include babies are positive signs. Dreaming about
interacting with a baby or simply seeing a baby in a dream can mean that pleasant
surprises and fortuitous occurrences are about to occur in your life...”,

For query ”how many tables can sql server join”, QLM-T5 had the largest
rank loss (-495): BM25 placed the relevant passage at rank 255 while BM25+QLM-
T5 at rank 750. We further note, however, that the top passage by BM25+QLM-
T5 is ”... A SQL Server JOIN is performed whenever two or more tables are
joined in a SQL statement.”, which appears to us to be relevant to the query4.

These examples suggest that (1) QLM-T5 can successfully capture the se-
mantic meaning of queries and passages, and produce a good match; (2) losses
observed for QLM-T5 might be because of unjudged passages in MS MARCO,
(3) results on MS MARCO should be considered very carefully as the dataset
does not contain information about unjudged documents (thus rendering impos-
sible the computation of residuals, e.g., for INST) and assessments appear to be
very shallow and primarily based on BM25.

5 Conclusion and Future Work

In this paper, we have adapted the T5 deep language model within the query like-
lihood model to rank passages. Results on the MS MARCO benchmark dataset
show that QLM-T5 significantly outperforms traditional QLM methods, quan-
tifying the benefits of using deep language models within QLM in place of MLE
and smoothed estimators. We also show that QLM-T5 more effectively models
query dependencies than sequential dependence models.

A drawback of QLM-T5 is its computational efficiency. The method, being
based on a transformer based neural network, requires considerable running time
at inference. In addition, unlike traditional QLM methods (but akin to sequen-
tial dependence models), the calculation of the likelihood of each query term is
conditioned on all previous query terms: pre-computing and storing query term
likelihoods independently of the query is then not possible. This makes it rea-
sonable to execute the QLM-T5 as a second-stage reranker, but it is infeasible to
use it as a first-stage ranker instead. However, we believe that this issue could be
partially alleviated by storing outputs of the encoder layer of T5 in the index so
that at runtime the only inference needed is at the decoder level. Compared to
other strong neural re-ranker baselines, such as BERT-based re-ranker [16], our
model is outperformed in terms of MRR@10 (BERT-Large: 0.365 vs. QLM-T5:
0.300). Future work will explore this direction along with alternative avenues to
improve the efficiency of QLM-T5, e.g., so that it becomes reasonable to apply
it to document ranking tasks, besides the considered passage ranking.

4 The passage marked relevant in MS MARCO for this query is ”... A JOIN clause
is used to combine rows from two or more tables, based on a related column between
them...”.
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